Aim: The growing complexity of cyber-physical systems impacts resources and development time. Hence, numerous component-based design approaches have been developed to mitigate complexity and, consequently, the R&D effort. But is complexity even measurable? The aims of this paper are: to contribute to the Cyber-Physical Systems (CPS) and Product Line Engineering (PLE) fields of research; to understand and apply the tools estimating Cyber-Physical System complexity; to evaluate the benefits of Pre-Integrated Architectures (PIARCHs) from the point of view of Cyber-Physical System complexity. Methods: Based on prior studies, we found that complexity is measurable. We used a structural complexity metric to calculate the impact of PIARCHs by creating variants of a given system architecture. In a practical application project, we used PIARCHs on two types of use cases: generic ones, like localization and perception, and a highly specific one: Urban Automated Driving. Results: Based on the calculation established by complexity metrics, PIARCHs reduce complexity. This has been revealed in theoretical and practical approaches. Generic use cases like localization and perception of an automated vehicle have more benefits with PIARCHs than the complex Urban Automated Driving use case. This can be explained by the fact that the number of inputs and parameters is smaller, and after the initial investment, the field of applications is wider. Conclusion: Project complexity is measurable, and the impact of PIARCHs mitigating complexity can be assessed. Their impact varies according to the complexity of the use case and the width of the field of applications. A minimum of complexity is required to justify the initial investment. However, an excessive PIARCH complexity reduces the number of applications and the payback of the initial investment.
Read full abstract