To study the hydrodynamic characteristics of blade trimming length in centrifugal pumps, Delayed Detached Eddy Simulation (DDES) with nonlinear eddy viscosity was utilized to conduct unsteady calculations on the centrifugal pump. A comprehensive examination of the fluid dynamic properties of the centrifugal pump, including external features, flow conditions, and pressure fluctuations, was carried out. By applying the theory of entropy production, the areas of high energy loss within the centrifugal pump were identified, and the correlations between local entropy production, energy loss, and unsteady flow in different areas with varying blade trimming lengths were analyzed. The results indicate that with the increase in blade trimming length, under rated flow conditions, the head decreases by 1.8%, 3.2%, and 5.7% for different blade trimming lengths, respectively, compared to normal impellers. Similarly, the efficiency decreases by 0.5%, 0.8%, and 1.0% for different blade trimming lengths, respectively. Similar trends were observed under other working conditions as well. As the degree of blade trimming increases, the irreversible losses after the failure of the centrifugal pump also increase significantly, indicating that the flow inside the centrifugal pump becomes disorder. Blade trimming leads to a disorderly fluid flow inside the centrifugal pump, causing an increase in the radial force during operation, which in turn leads to an increase in vibration amplitude and affects its operational stability. Blade trimming failure has a significant impact on the frequency and amplitude of pressure pulsation, resulting in abnormal pressure pulsation and abnormal vibration of the centrifugal pump. Therefore, early warning and diagnosis of blade trimming can be achieved through pressure pulsation monitoring.
Read full abstract