In this work, we study the competence between the reactions of hydrogen and methyl scission during thermal cracking and combustion of propane, the emergence of the two isomers of the propyl radical, n-propyl and i-propyl, and their subsequent β-scission reaction to ethene and methyl radical. The purpose of the study was to analyze the accuracy of density functional (DFT) methods as applied on this relatively well-known subset of the reactions implied in the production of propylene oxide from propane and propene. Conventional (B3LYP, B3PW91) and state-of-the-art (PBE0, M06, BMK) DFT methods were employed, and their accuracy checked against experimental data and calculations performed using model chemistries (complete basis set CBS-4M, QB3, and APNO, and G4 methods) and ab initio methods (MP2, CCSD(T) with a large 6-311 ++G(3df,2pd) basis set). The results obtained at the BMK level for the thermodynamics of the reactions are closer to experimental data than those afforded by any other DFT method and very similar actually to CBS or CCSD(T) results, even if a medium size basis set is used. Activation energies determined using twoand three-parameter Arrhenius equations are also very good, but the preexponential factors are incorrect. Tunneling and internal rotation corrections must be applied to obtain semiquantitative results.