In order to effectively develop the atomic layer deposition (ALD) reactor and process, having huge potentials and applications in the advanced technology fields, a practical design method of the gas conditions for the ALD was studied using computational fluid dynamics (CFD). The design method consisting of the following four steps was studied. 1) At a low gas pressure producing no gas recirculation, the maximum difference in the gas phase temperature from the sample stage temperature, ΔT, was obtained at various chamber wall temperatures. 2) The ΔT value was studied at various gas pressures producing the gas recirculation. 3) For determining the applicable process conditions, contour diagrams of the temperature uniformity were obtained utilizing the temperature uniformity equations consisting of various process parameters. 4) The relationships of the maximum gas residence time with the gas flow rate and the gas pressure were obtained. The process in this study is expected to be practical for designing the thermal and gas flow conditions for achieving a fast ALD.
Read full abstract