Freshly extracted sugarcane juice is an ideal substrate for microbial fermentation and browning reactions. The present study is the first report on the potential of pulsed light (PL) processing in improving microbial stability with the retention of major bioactive. PL processing at different levels of voltage (2.1-2.7 kV) and number of pulses (100-200) was explored. The present study aimed to investigate the impact of PL processing on the quality of sugarcane juice, bioactive composition and microbial load. The microbial load, such as aerobic mesophiles, yeast and mold, and total coliform, was reduced to below 1 log colony-forming units mL-1 in juice samples subjected to intense PL treatment at 2.7 kV. The maximum value of the total color difference of the sugarcane juice was below 4.0, even at extreme levels of PL process parameters. In comparison with the unprocessed juice, the reduction in total phenols (Folin ciocalteu reagent assay) and the total antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay) was limited to 6% and 16.7%, respectively, when treated at 2.7 kV/200 pulses. The pH and total soluble solids of the juice remained unaffected in all the processed samples. Among the process parameters considered, the treatment voltage was found to significantly affect the quality parameters and microbial load. PL processing at 2.1 kV/170 pulses gave an optimally processed juice with a microbial load below the permissible limit and desirability value of 0.77. The results suggest that the PL treatment is effective for enhancing the microbial stability and maintaining the bioactive components of the sugarcane juice. Furthermore, the outcomes from the present study are expected to pave the way for further in-depth investigation of the effect of PL treatment on the critical quality attributes and shelf life of sugarcane juice. The technology will be useful for adoption by different stakeholders, including manufacturers and retailers in the food processing sector. © 2024 Society of Chemical Industry.
Read full abstract