3D printing efficiency, as a key indicator of additive manufacturing technology, directly affects its competitiveness in rapid prototyping, small batch production, and even large-scale industrial applications. Compared with traditional manufacturing methods, the high efficiency of 3D printing is often considered a bottleneck, hindering its application across various fields. Herein, a versatile and efficient strategy is proposed, namely, the dimensional reduction printing (DRP) process, to break the obstacle of high efficiency of 3D printing. Specifically, the self-healing CDs/PMMA nanocomposites were constructed via introducing carbon dots (CDs) synthesized by microfluidics into poly(methyl methacrylate) (PMMA) materials. Under the assistance of abundant hydrogen bonding and the entanglement of polymer chains, the fabricated CDs/PMMA nanocomposites exhibited outstanding self-healing properties, which can be utilized as ideal printing inks to achieve a highly efficient 3D printing process through assembling the printed simple 1D and 2D components into complex 3D models. We firmly believe that the DRP strategy opens up an idea for the design of a 3D printing process and points out the direction for the meaningful application of 3D printing technologies.
Read full abstract