Atmospheric turbulence is an intrinsic factor that causes uncertainty of wind speed and its power generation by wind turbine. The research of atmospheric turbulence characteristics of wind farms can be used to reduce this uncertainty. In this paper, enough measurement data getting from actual wind farms is used for information processing to quantitatively analyze the daily variation of wind speed and its power output characteristics. Furthermore, the concept of spatiotemporal diurnal modulation characteristics of atmospheric turbulence is proposed with a global scope, which is an intrinsic property of wind. Besides the daily variation characteristics, the average hourly wind speed has a short-term modulation effect on its turbulence and provides a modulation characteristic on wind speed uncertainty. Moreover, the long-term modulation process is affected by seasonal and regional factors, indicating that it has spatiotemporal characteristics. This atmospheric turbulence characteristic has similar effects on characteristic description parameters. However, the characteristics description parameters of wind speed and wind power variation fail to reflect such intrinsic characteristics that are not affected by the spatiotemporal diurnal modulation characteristics of atmospheric turbulence. This indicates that they do not have diurnal characteristics. Finally, a time-varying model combined with the spatiotemporal diurnal modulation characteristics of wind speed and its power generation is discussed by applying on the evaluation of frequency control in power systems. It is shown that the results obtained by measured data processing could improve the power generation quality of large-scale wind power effectively.
Read full abstract