We report mineral compositions and bulk rock geochemistry of mafic dykes intruded in the western part of Bastar craton, comprising of Archaean Amgaon Group and Proterozoic Dongargarh Supergroup of rocks. Field relations show two distinct trends of these dykes which are almost perpendicular to each other but having similar mineralogical and geochemical characteristics. Dykes are mostly composed of pyroxenes, plagioclase and subordinate amount of amphiboles and Fe-Ti oxides (magnetite and ilmenite). These hypersthene normative basaltic dykes show tholeiitic trend and are characterised by narrow compositional variations of MgO (6.06–7.08 wt%), FeOt (15.06–17.78 wt%), TiO2 (1.18–2.24 wt%), Al2O3 (11.96–15.54 wt%) and low Mg# [atomic Mg/(Mg + Fe2+) × 100] values in the range of 37–48. Low loss on ignition (LOI) values <2 wt% and significant trends of trace elements (Nb, La, Th, Sr) with Zr indicate insignificant effects of post magmatic processes in these dykes. Smooth correlations between major oxides and MgO, among trace element ratios (Ce/La, Th/Yb, Nb/Yb) and negative Nb-Ta anomalies without positive Zr and Hf anomalies negate the crustal contamination effects. The correlations of compatible (e.g. Cr, Ni) and incompatible (e.g. Ba, Rb) elements show involvement of both fractional crystallisation and partial melting processes in their formation. Flat heavy rare earth element (HREE) pattern with low (Tb/Yb)n values reveal their genesis from a mantle source without involvement of garnet and geochemical models suggested in the present study indicate melting from spinel lherzolite mantle source. Strong geochemical similarities of present dykes with those of earlier reported Lakhna (1.46 Ga) and Bandimal (1.42 Ga) dykes of northern Bastar craton suggest a widespread mafic magmatic event across the Bastar craton during 1.42–1.46 Ga. Present dykes therefore represent a subduction related outgrowth of Columbia supercontinent due to the accretion of continental margins.