In this paper, two kinds of copper-containing steels with copper contents of 2.31 and 6.01 wt.% were designed. By comparing with commercial Q355, the bactericidal properties of copper in seawater containing sulfate-reducing bacteria (SRB) and its influence on the corrosion process of steel were revealed. The corrosion rate, morphology of products, and bactericidal action of copper were tracked by scanning electron microscopy, X-ray diffraction, confocal microscopy, and electrochemical analysis techniques. It was found that the resistance of copper-containing steel to bacterial corrosion was obviously better than that of non-copper-containing steel. At 28 days, the weight loss rates in the SRB environment for 0Ni2Cu6 samples increased by merely 5.43%, which was nearly half that of Q355 of 9.75%. Cu-containing steels exhibited potent antibacterial action, with the ε-Cu phase altering the corrosion byproduct composition from brittle flakes to robust particles and inhibiting the production of H2S. The killed bacteria adhered to the surface of the steel and slowed down the corrosion of the steel. The confocal laser scanning microscope and electrochemical experiments showed that a dense CuFeO4 film formed on the substrate, impeding corrosive ion penetration, and an upsurge in Cu content markedly enhanced the material’s anti-corrosion and antimicrobial attributes.
Read full abstract