Loss of permanent teeth after tooth extraction without replacement of missing teeth can result in impaired masticatory, esthetic, phonetic functions, and impaired balance of the masticatory organ in the mouth. Therefore, a method is needed to inhibit the alveolar bone resorption process so that the dimensions of the tooth socket can be maintained vertically or horizontally until the time of implant placement, which is called the socket preservation procedure. α-mangostin is known to have a potential anti-inflammatory effect and most likely can be used as a potential therapeutic agent to inhibit bone resorption caused by posttooth extraction inflammatory processes. The aim of the study was to determine the effect on the inflammatory process and osteogenesis on osteoblast cell line culture by induction with lipopolysaccharide (LPS) and α-mangostin. This was an in vitro laboratory experimental study on mouse osteoblast cell line culture. The treatment was given with LPS, α-mangostin, and combination on osteogenic medium, using the same concentration for all concentrates. The sample will then be processed and analyzed using the real-time polymerase chain reaction. The highest interleukin-11 (IL-11) gene expression was found in α-mangostin treatment, but there was no significant difference in IL-11 expression between the study groups. The highest runt-related transcription factor-2 (RUNX-2) gene expression was found in a group that received induction with LPS and α-mangostin, and from these results, it was found that there was a significant difference in RUNX-2 expression between the study groups. LPS and α-mangostin can increase osteogenesis in osteoblast cell culture in the osteogenic medium.