Geochronological, geochemical, whole-rock Sr–Nd, and zircon Hf isotopic analyses were carried out on the Jiasha Gabbro, mafic microgranular enclaves (MME) and host Longchahe Granite samples from the Gejiu area in the southeast Yunnan province, SW China, with the aim of characterizing their petrogenesis. Compositional zoning is evident in the gabbro body as the cumulate textures and mineral proportions in the gabbro interior are distinct from the gabbro margin. The Longchahe Granite largely comprises metaluminous quartz monzonite with distinctive K-feldspar megacrysts, but also contains a minor component of peraluminous leucogranite. The MME have spheroidal to elongated/lenticular shapes with sharp, crenulated and occasionally diffuse contacts with the host granite, which we attribute to the undercooling and disaggregation of mafic magma globules within the cooler host felsic magma. Field observations, geochronology, geochemistry, Sr–Nd and zircon Hf isotopic compositions point to a complex petrogenesis for this granite–MME–gabbro association. Zircon 206Pb/238U ages determined by LA-ICP-MS for a mafic enclave, its host granite and the gabbro body are 83.1 ± 0.9 Ma, 83.1 ± 0.4 Ma and 83.2 ± 0.4 Ma, respectively, indicating coeval crystallization of these igneous rock units. Crystal fractionation processes can explain much of the compositional diversity of the Jiasha Gabbro. The geochemical features of the gabbro, such as high Mg# (up to 70) and Cr (up to 327 ppm), enrichment in LILEs (e.g., Rb, Ba, K2O) and LREEs, and depletion in HFSE (e.g., Nb, Ta, Ti), together with initial 87Sr/86Sr ratios of 0.708–0.709 and negative eNd(t) values (−5.23 to −6.45), indicate they were derived from a mantle source that had undergone previous enrichment, possibly by subduction components. The Longchahe Granite has a large range of SiO2 (59.87–74.94 wt%), is distinctly alkaline in composition, and has Sr–Nd–Hf isotopic compositions ((87Sr/86Sr)i > 0.712, eNd(t) = −6.93 to −7.62 and eHf(t) = −5.8 to −9.9) that are indicative of derivation from a crustal source. However, the most primitive rocks of Longchahe Granite are compositionally distinct from any feasible crustal melt. We interpret the spectrum of rock types of the Longchahe Granite to have formed via mixing between crustally derived peraluminous leucogranite magma and mantle-derived magma of similar heritage to the Jiasha Gabbro. We speculate that this mixing event occurred early in the magmatic history of these rocks at relatively high temperature and/or deep in the crust to allow efficient physical mixing of magmas. Saturation and accumulation of K-feldspar and zircon in the mixed magma is invoked to explain the megacrystic K-feldspar and elevated K2O and Zr content of some of the granitic rocks. A later episode of magma mixing/mingling is preserved as the MME that have geochemical and isotopic compositions that, for the most part, are intermediate between the granite and the gabbro. The MME are interpreted to be fractionated melts of mafic magma related to gabbro that were subsequently injected into the cooler, partly crystalline granitic magma. Mingling and mixing processes within the convectively dynamic upper crustal magma chamber resulting in a hybrid (MME) magma. During this second mixing episode, element interdiffusion, rather than bulk physical mixing, is interpreted to be the dominant mixing process.
Read full abstract