Acute myeloid leukemia (AML) is a type of leukemia with a very poor prognosis. Consequently, this neoplasm is extensively researched to discover new therapeutic strategies. One area of investigation is the study of intracellular communication and the impact of the bone marrow microenvironment on AML cells, with chemokines being a key focus. The roles of β-chemokines, γ-chemokines, and δ-chemokines in AML processes have not yet been sufficiently characterized. This publication summarizes all available knowledge about these chemotactic cytokines in AML and myelodysplastic neoplasm (MDS) processes and presents potential therapeutic strategies to combat the disease. The significance of β-chemokines, γ-chemokines, and δ-chemokines is detailed, including CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CCL23, CCL28, and CX3CL1 (fractalkine). Additionally, the importance of atypical chemokine receptors in AML is discussed, specifically ACKR1, ACKR2, ACKR4, and CCRL2. The focus is on the effects of these chemokines on AML cells, particularly their influence on proliferation and resistance to anti-leukemic drugs. Intercellular interactions with non-AML cells, such as mesenchymal stem cells (MSC), macrophages, and regulatory T cells (Treg), are also characterized. The clinical aspects of chemokines are thoroughly explained, including their effect on overall survival and the relationship between their blood levels and AML characteristics.