Bisphenol A (BPA), as an endocrine disruptor, poses a potential threat to ecosystems and human health in aquatic environments. Membrane catalytic systems can accelerate the degradation of BPA and facilitate its conversion into harmless compounds. Nevertheless, the complex nature of the water environments and the limited stability of catalysts often result in challenges such as catalyst aging and deactivation. Herein, an anti-aging multifunctional AgFeO2 catalytic material with electron transfer membrane support was prepared for synergistic catalysis of low-energy LED light (12 W) excitation and peroxydisulfate (PDS) activation. The anti-aging photocatalytic membrane completely degraded 10 ppm of BPA within 30 min, and did not show significant aging after the long-term synergistic catalytic process. In addition, actual river water was employed to assess the aging process and catalytic efficiency in a practical environment. A 60.79 cm2 photocatalytic membrane completely purified 10 L of BPA polluted river water, while the total organic carbon content decreased by 50 %. This was mainly due to the synergistic catalytic effect of the membrane, which boosted photoelectron transfer through electron transfer shortcuts, thereby enhancing persulfate activation. Overall, the multifunctional membrane provides an effective strategy for achieving a long-lasting catalytic effect and controlling photocatalyst aging in practice.