Background/Objectives: The increasing complexity of spinal oncology procedures, particularly in en-bloc tumor resections, creates challenges in tissue perfusion assessment due to extended operative times and extensive surgical dissection. Real-time visualization of tissue perfusion can be achieved with ICG using commercially available handheld imaging systems, offering potential advantages in spinal oncology cases. This study assessed the utility of ICG in analyzing soft-tissue viability during complex spine procedures extending beyond 7.5 h, with a particular focus on oncologic resections. Methods: Three cases that required over 7.5 h of operative time were chosen for ICG utilization. These cases included an en-bloc malignant peripheral nerve sheath tumor resection, an en-bloc resection of a malignant epithelioid neoplasm, and a long-segment fusion revision for pseudoarthrosis. At the conclusion of the critical portion of the procedure, a handheld intraoperative fluorescence camera was utilized to visualize the tissue penetration of intravenous ICG. Results: Prior to injecting ICG, devascularized tissue was not clearly visible. Injecting ICG allowed clear separation of vascularized (fluorescing) and devascularized (non-fluorescing) tissues. One region of non-florescent tissue was later confirmed to be devascularized with MRI and experienced postoperative infection. Conclusions: As the complexity of spinal oncology procedures increases, ICG fluorescence imaging offers a novel method for real-time assessment of tissue perfusion. This technique may be particularly valuable in extensive tumor resections, post-radiation cases, and revision surgeries where tissue viability is at risk. Further investigation in the spinal oncology population could help establish whether early identification of poorly perfused tissues impacts wound healing outcomes.
Read full abstract