ABSTRACTIn this study, a fully discrete defect correction finite element method for the unsteady incompressible Magnetohydrodynamics (MHD) equations, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. It is a continuous work of our formal paper [Math Method Appl Sci. 2017. DOI:10.1002/mma.4296]. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear MHD equation is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect-correction technique. Then, we introduce the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. Some numerical results [see Math Method Appl Sci. 2017. DOI:10.1002/mma.4296] show that this method is highly efficient for the unsteady incompressible MHD problems.