One of the most important issues that can significantly affect the electric power network’s ability to operate sustainably is the optimal power flow (OPF) problem. It involves reaching the most efficient operating conditions for the electrical networks while maintaining reliability and systems constraints. Solving the OPF problem in transmission networks lowers three critical expenses: operation costs, transmission losses, and voltage drops. The OPF is characterized by the nonlinearity and nonconvexity behavior due to the power flow equations, which define the relationship between power generation, load demand, and network component physical constraints. The solution space for OPF is massive and multimodal, making optimization a challenging concern that calls for advanced mathematics and computational methods. This paper introduces an innovative metaheuristic algorithm, the Egyptian Stray Dog Optimization (ESDO), inspired by the behavior of Egyptian stray dogs and used for solving both single and multi-objective optimal power flow problems concerning the transmission networks. The proposed technique is compared with the particle swarm optimization (PSO), multi-verse optimization (MVO), grasshopper optimization (GOA), and Harris hawk optimization (HHO) and hippopotamus optimization (HO) algorithms through MATLAB simulations by applying them to the IEEE 30-bus system under various operational circumstances. The results obtained indicate that, in comparison to other used algorithms, the suggested technique gives a significantly enhanced performance in solving the OPF problem.
Read full abstract