Abstract
Vehicle-to-Vehicle (V2V) communication can not only provide unrestricted inter-vehicle information transmission, but also improve spectrum utilization efficiency. However, it also brings uncontrollable co-channel interference, which can not guarantee the quality of service of V2V communication. In this paper, we propose an intelligent resource allocation scheme for V2V communication to improve vehicle connectivity. To enhance cooperation among vehicles and avoid excessive co-channel interference between them, we propose an asynchronous resource allocation method where vehicles choose to send or not to send data based on observed environmental information to ensure stable overall performance. Furthermore, we present a novel resource allocation algorithm based on Heterogeneous Agent Proximal Policy Optimization (HAPPO) to solve the resource allocation problem in asynchronous vehicular networks. The HAPPO algorithm calculates the global advantage function when each agent makes an action during the training process to ensure that the action taken contributes to the overall performance improvement. Our proposed approach improves the robustness of V2V communication by reducing co-channel interference while maintaining stable overall performance. Simulation results show that the proposed approach can effectively improve the V2V communication connectivity and reduce the packet loss rate compared with the existing methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have