Designing persistent dual-band afterglow materials with thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) contributed to solving the problems of homogenization and singularity in long afterglow materials. Here, six aryl acetonitrile (CBM) and aryl dicyanoaniline (AMBT) derivatives, used as host and guest materials respectively, were successfully designed and synthesized based on the isomerization effect. Among of them, 0.1 % m-CBM/p-AMBT showed the longest dual-band TADF (540 ms) and RTP lifetimes (721 ms), as well as persistent afterglow over 8 s, whose fluorescence (ΦFL), TADF (ΦT) and RTP (ΦP) quantum yields were 0.11, 0.06 and 0.22 in sequence. More interestingly, some doping systems constructed by CBM and AMBT series compounds showed persistent triple-band emissions composed of TADF, unimolecular and aggregated AMBT series compounds. What’s more, ΦFL, ΦT and ΦP of 1 % o-AMBT@PMMA film were up to 0.17, 0.17, 0.23 in turn, with TADF, RTP and afterglow lifetimes of 606 ms, 727 ms, and 10 s respectively. TADF and RTP emission of CBM/AMBT series doping systems was attributed to host sensitized guest emission. Besides, the comparison displayed AMBT series compounds had bigger intensity ratios between TADF and RTP emission in PMMA films compared to in CBM series compounds. Finally, a series of data encryption were successfully constructed based on different afterglow lifetimes of the doping systems, and a dynamic anti-counterfeiting pattern was prepared by using different temperature responses of TADF and RTP emissions.
Read full abstract