Abstract

In this work, we consider an initial-boundary value problem for a time-fractional biharmonic equation in a bounded polygonal domain with a Lipschitz continuous boundary in R2 with clamped boundary conditions. After stating the well-posedness, we focus on some regularity results of the solution with respect to the regularity of the problem data. The spatially semidiscrete scheme covers several popular lowest-order piecewise-quadratic finite element schemes, namely, Morley, discontinuous Galerkin, and C0 interior penalty methods, and includes both smooth and nonsmooth initial data. Optimal order error bounds with respect to the regularity assumptions on the data are proved for both homogeneous and nonhomogeneous problems. The numerical experiments validate the theoretical convergence rate results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.