Bradycardia is a commonly occurring condition in premature infants, often causing serious consequences and cardiovascular complications. Reliable and accurate detection of bradycardia events is pivotal for timely intervention and effective treatment. Excessive false alarms pose a critical problem in bradycardia event detection, eroding trust in machine learning (ML)-based clinical decision support tools designed for such detection. This could result in disregarding the algorithm’s accurate recommendations and disrupting workflows, potentially compromising the quality of patient care. This article introduces an ML-based approach incorporating an output correction element, designed to minimise false alarms. The approach has been applied to bradycardia detection in preterm infants. We applied five ML-based autoencoder techniques, using recurrent neural network (RNN), long-short-term memory (LSTM), gated recurrent unit (GRU), 1D convolutional neural network (1D CNN), and a combination of 1D CNN and LSTM. The analysis is performed on ∼440 hours of real-time preterm infant data. The proposed approach achieved 0.978, 0.73, 0.992, 0.671 and 0.007 in AUC-ROC, AUC-PRC, recall, F1 score, and false positive rate (FPR) respectively and a false alarms reduction of 36% when compared with methods without the correction approach. This study underscores the imperative of cultivating solutions that alleviate alarm fatigue and encourage active engagement among healthcare professionals.
Read full abstract