In this paper we initiate the study of holographic quantum liquids in 1+1 dimensions. Since the Landau Fermi liquid theory breaks down in 1+1 dimensions, it is of interest to see what holographic methods have to say about similar models. For theories with a gapless branch, the Luttinger conjecture states that there is an effective description of the physics in terms of a Luttinger liquid which is specified by two parameters. The theory we consider is the defect CFT arising due to a probe D3 brane in the AdS Schwarzschild planar black hole background. We turn on a fundamental string density on the worldvolume. Unlike higher dimensional defects, a persistent dissipationless zero sound mode is found. The thermodynamic aspects of these models are considered carefully and certain subtleties with boundary terms are explained which are unique to 1+1 dimensions. Spectral functions of bosonic and fermionic fluctuations are also considered and quasinormal modes are analysed. A prescription is given to compute spectral functions when there is mixing due to the worldvolume gauge field. We comment on the Luttinger conjecture in the light of our findings.