Precisely assessing statistical parameters to characterize spatial soil variability presents a significant challenge in probabilistic slope stability analysis, primarily due to inherent soil uncertainties and limited field-specific data. Probabilistic back analysis, recognized as an effective and reliable technique, offers a rational method for utilizing observational data to invert parameters. Nevertheless, previous investigations into parameter inversion for slope stability analysis have seldom considered the coupling of hydro-mechanical characteristics in reservoir landslides. This study proposes a novel integrated Bayesian framework to perform back analysis of reservoir landslides, incorporating the spatial variability of hydro-mechanical parameters. Within this framework, a hypoplastic constitutive model is developed to characterize the step-like deformation of the reservoir slope. The posterior knowledge of the saturated permeability coefficient and shear strength parameters is obtained by collecting field monitoring data of the underground water level and ground displacement. The Maliulin landslide, located in the Three Gorges Reservoir area of China, is used as an illustrative example to validate the proposed framework through back analysis of spatially variable soil parameters and probabilistic stability analysis. The results demonstrate that the proposed Bayesian updating framework significantly reduces the uncertainties associated with statistical values of soil parameters, providing more accurate and reasonable updated soil parameters for probabilistic slope stability analysis.
Read full abstract