Background/objectiveSerpina3n/Serpina3 has been identified to be implicated in inflammatory diseases, but its role in interstitial cystitis/bladder pain syndrome (IC/BPS) remains unknown. Here, we aimed to reveal serpina3n/serpina3 role in IC/BPS in vivo and in vitro.MethodsThe IC/BPS model in mice was induced by intraperitoneal injection of 150 mg/kg of cyclophosphamide (CYP). HE and toluidine blue staining were used for histology assessment. Serpina3n/serpina3 expression in the bladder tissues from IC/BPS patients and mouse models were determined by qPCR, immunohistochemistry and western blotting. XAV-939 treatment was applied to inhibit β-catenin activation. Serpina3 role in modulating the growth and apoptosis of HBlEpCs, a human primary bladder epithelial cell line, was assessed by CCK-8 and flow cytometry assays.ResultsSerpina3n/serpina3 expression was decreased in both human and mice bladder tissues with IC/BPS. Upregulation of serpina3n significantly alleviated CYP-induced bladder injury, with decreased mast cells and pro-inflammatory factor levels, including IL-1β, IL-6, and TNF-α, while increased IL-10 level. In addition, serpina3 overexpression inhibited the apoptosis of HBlEpCs, and increased cell growth. In mechanism, we found that serpina3 overexpression promoted the activation of wnt/β-catenin signaling. And, the inhibition of wnt/β-catenin signaling with XAV-939 abolished serpina3n/serpina3 role in protecting bladder tissues from CYP-induced cystitis, as well as inhibiting HBlEpC apoptosis.ConclusionSerpina3n/serpina3 expression was decreased in IC/BPS. Overexpression of serpina3n could alleviate CYP-induced IC/BPS by activating the Wnt/β-catenin signal. This study may provide a new therapeutic strategy for IC/BPS.