We previously demonstrated that insect cells were able to synthesize recombinant human procollagen I as triple-helical heterotrimers when transfected with cDNAs of both proalpha1(I) and proalpha2(I) chains. However, most of the heterotrimers were retained within the cells, unlike in the case of mammalian cells [Tomita, M., Kitajima, T., and Yoshizato, K. (1997) J. Biochem. 1061-1069]. In an attempt to improve the secretion of the heterotrimers, we introduced the putative collagen-specific chaperone HSP47 into this insect expression model. Mouse HSP47 produced by the insect cells bound intracellularly to both human proalpha1(I) and proalpha2(I) chains and enhanced the secretion of procollagen I heterotrimers. HSP47 was also coexpressed with either proalpha1(I) chains or proalpha2(I) chains, which showed that it enhanced the secretion of the former but not the latter. This selective effect of HSP47 was similarly observed in the cells treated with inhibitors of procollagen triple helix formation, indicating that HSP47 can also accelerate the secretion of non-helical procollagens. HSP47 did not change the intracellular solubility of proalpha1(I) and proalpha2(I) chains in 1% NP-40, eliminating the possibility that it prevents proalpha chains from aggregating into insoluble forms within the insect cells. We concluded that HSP47 can play a role in the secretion of alpha1(I)-procollagen chains in the insect cell model. The present study also demonstrated the dissimilarity in the mechanism of folding and secretion of the expressed procollagen I between the insect and mammalian cells.
Read full abstract