The integrity of democratic processes relies on secure and reliable election systems, yet achieving this reliability is challenging. This paper introduces the Post-Quantum Secured Multiparty Computed Hierarchical Authoritative Consensus Blockchain (PQMPCHAC-Bchain), a novel e-voting system designed to overcome the limitations of current Biometric Electronic Voting Machine (EVM) systems, which suffer from trust issues due to closed-source designs, cyber vulnerabilities, and regulatory concerns. Our primary objective is to develop a robust, scalable, and secure e-voting framework that enhances transparency and trust in electoral outcomes. Key contributions include integrating hierarchical authorization and access control with a novel consensus mechanism for proper electoral governance. We implement blockchain sharding techniques to improve scalability and propose a multiparty computed token generation system to prevent fraudulent voting and secure voter privacy. Post-quantum cryptography is incorporated to safeguard against potential quantum computing threats, future-proofing the system. Additionally, we enhance authentication through a deep learning-based face verification model for biometric validation. Our performance analysis indicates that the PQMPCHAC-Bchain e-voting system offers a promising solution for secure elections. By addressing critical aspects of security, scalability, and trust, our proposed system aims to advance the field of electronic voting. This research contributes to ongoing efforts to strengthen the integrity of democratic processes through technological innovation.
Read full abstract