Hydrogen sulfide (H2S) is a highly toxic and dangerous gas with a flammable and corrosive nature, making the development of reliable gas sensors for its detection vital. This study investigated the enhancement in H2S gas sensing performance of commercial SnO2 powders after high-energy milling. SnO2 powders were subjected to high-energy milling for 30, 60, and 90 min and then were characterized using advanced techniques to evaluate their morphology, chemical composition, and crystallinity. The response of a pristine SnO2 gas sensor, and ones where the SnO2 was milled for 30, 60 and 90 min, were 2.46, 2.27, 3.01, and 1.98, respectively, to 10 ppm H2S at 300°C. Thus, the H2S gas sensing results revealed that the SnO2 powders milled for 60 min exhibited the highest sensing performance. This improvement in H2S sensing performance was attributable to the reduced particle sizes achieved through the high-energy milling process, which increased the surface area and created defects on the surface of the SnO2 particles, thereby enhancing the interaction between the gas molecules and sensor material. The smaller morphological size of the particles and surface defects subsequently promoted the resistance modulation crucial for H2S gas detection. This study demonstrates that high-energy ball milling can effectively boost the gas-sensing features of SnO2 powders. The findings can provide guidance for enhancing the gas-sensing capabilities of other resistive sensors.
Read full abstract