In order to explore the novel application of boron nitride nanotubes (BNNTs), we investigate reactivities of pristine and silicon-doped (Si-doped) (8,0) single-walled BNNTs towards the CO molecule by performing density functional theory calculations. Compared with weak physisorption on the pristine BNNT, the CO molecule presents strong chemical interaction with the Si-doped BNNT, as indicated by the calculated geometrical structures and electronic properties for these systems. It is suggested that doping BNNTs with silicon is expected to be a suitable strategy for adjusting the properties of BNNTs, and that Si-doped BNNTs are expected to find novel applications in nanotechnology.
Read full abstract