Integrating algorithm-based clinical decision support (CDS) systems poses significant challenges in evaluating their actual clinical value. Such CDS systems are traditionally assessed via controlled but resource-intensive clinical trials. This paper presents a review protocol for preimplementation in silico evaluation methods to enable broadened impact analysis under simulated environments before clinical trials. We propose a scoping review protocol that follows an enhanced Arksey and O'Malley framework and PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines to investigate the scope and research gaps in the in silico evaluation of algorithm-based CDS models-specifically CDS decision-making end points and objectives, evaluation metrics used, and simulation paradigms used to assess potential impacts. The databases searched are PubMed, Embase, CINAHL, PsycINFO, Cochrane, IEEEXplore, Web of Science, and arXiv. A 2-stage screening process identified pertinent articles. The information extracted from articles was iteratively refined. The review will use thematic, trend, and descriptive analyses to meet scoping aims. We conducted an automated search of the databases above in May 2023, with most title and abstract screenings completed by November 2023 and full-text screening extended from December 2023 to May 2024. Concurrent charting and full-text analysis were carried out, with the final analysis and manuscript preparation set for completion in July 2024. Publication of the review results is targeted from July 2024 to February 2025. As of April 2024, a total of 21 articles have been selected following a 2-stage screening process; these will proceed to data extraction and analysis. We refined our data extraction strategy through a collaborative, multidisciplinary approach, planning to analyze results using thematic analyses to identify approaches to in silico evaluation. Anticipated findings aim to contribute to developing a unified in silico evaluation framework adaptable to various clinical workflows, detailing clinical decision-making characteristics, impact measures, and reusability of methods. The study's findings will be published and presented in forums combining artificial intelligence and machine learning, clinical decision-making, and health technology impact analysis. Ultimately, we aim to bridge the development-deployment gap through in silico evaluation-based potential impact assessments. DERR1-10.2196/63875.
Read full abstract