A time-of-flight measurement-based three-dimensional (3D) profiler system employing a lightweight scanning system is demonstrated. To reduce the weight of the scanning system, and thereby achieve faster scanning speeds, two Fresnel prism sheets were employed as the scanning optics and installed to work as a pair of Risley prisms. Each Fresnel prism sheet has a diameter of 102 mm and mass of 15 g, which is about 12 times lighter than ordinary bulky prism. By scanning the laser beam with the developed scanning system, a 3D point cloud image of a target object located 8 m away could be successfully obtained. The image distortion was removable by correcting six geometrical parameters of the scanner using a simple optimization algorithm. It was confirmed by the experiment that once the distortion has been corrected, it is valid for other scanning speeds (and trajectories), enabling 3D profile measurements that do not require postprocessing of measured data. Measurement results for a standard target composed of square extrusions were in good agreement with the reference values, with deviations of <1 mm.