The integration of Artificial Intelligence (AI) and Big Data Analytics (BDA) in project management has become a critical enabler of efficiency in managing large-scale, complex projects. This research paper delves into how AI-driven big data analytics can revolutionize traditional project management methodologies by introducing dynamic scheduling, real-time risk prediction, and automated task prioritization strategies. These advanced techniques, which leverage machine learning (ML) models and extensive historical project data, enable a shift from reactive to proactive project management, ensuring that risks and resource constraints are identified and addressed before they impact project delivery. By analyzing massive datasets, including historical performance metrics, resource availability, and project timelines, AI-driven systems can forecast delays, assess risk levels dynamically, and adapt schedules in real-time. This proactive approach facilitates better decision-making, optimized resource allocation, and improved project outcomes. The study is anchored on the premise that the sheer volume of data generated in large-scale projects often overwhelms traditional project management systems. By incorporating AI and BDA, project managers can better utilize this data, turning it into actionable insights that inform intelligent decision-making. Machine learning algorithms, particularly those specializing in predictive analytics, are capable of identifying patterns that elude human analysis, allowing for the accurate forecasting of project risks, schedule slippage, and task dependencies. This ability to predict potential issues, such as resource bottlenecks or unforeseen delays, enables project teams to implement mitigative actions in advance, thus reducing the likelihood of project failure. Furthermore, dynamic scheduling is a key focus of this research, as AI-powered models can continuously adjust project timelines based on real-time data. These models consider variables such as resource utilization rates, task dependencies, and evolving project constraints, offering adaptive scheduling mechanisms that evolve throughout the project lifecycle. The automated task prioritization system, powered by BDA, ensures that the most critical tasks receive the appropriate level of attention at the right time, improving project performance and enhancing resource efficiency. Through natural language processing (NLP) and advanced data mining techniques, AI models can also analyze project documentation and communication channels to detect potential risks and suggest task adjustments. The paper also discusses the application of AI in risk prediction, focusing on how AI models can analyze risk factors from historical data, including resource constraints, financial limitations, and market volatility, to produce risk profiles that project managers can use for strategic planning. Real-time risk assessments, made possible by the integration of AI and BDA, can help project teams stay ahead of potential disruptions. This allows for more accurate contingency planning and reduces the overall risk to project timelines and budgets. Practical applications of these AI-driven strategies are presented through case studies of large-scale projects in various industries, including construction, information technology, and healthcare. These case studies demonstrate how AI-powered analytics have been successfully implemented to enhance project efficiency, optimize resource allocation, and minimize risks in complex projects. The study underscores the importance of integrating these technologies into modern project management frameworks to cope with the increasing complexity of projects in today’s fast-paced business environment. While the potential benefits of AI and BDA in project management are substantial, this paper also addresses the challenges associated with their implementation. One significant challenge is the quality and availability of data required to train AI models effectively. Incomplete or inaccurate data can lead to unreliable forecasts, compromising the project’s success. Additionally, the paper explores the issues of data privacy and security in AI-driven project management systems, highlighting the need for robust data governance frameworks to ensure the ethical use of AI technologies. Another key consideration is the resistance to change within organizations, where traditional project management methods are deeply ingrained. The paper emphasizes the need for a cultural shift towards data-driven decision-making and suggests strategies for fostering an environment conducive to AI adoption. This includes training project management teams to work alongside AI systems and fostering collaboration between AI experts and project managers to ensure smooth implementation and operation. Finally, this research outlines future trends in AI and BDA for project management, suggesting that further advancements in AI technologies, such as reinforcement learning and more sophisticated natural language processing algorithms, will drive the next generation of intelligent project management systems. These future systems are expected to be even more adept at handling the complexities of large-scale projects, offering real-time solutions to unforeseen challenges and adapting dynamically to changing project requirements.