A method of measuring the radius of circular parts by binocular stereo vision technology is proposed. First of all the interior and exterior parameters of cameras are acquired by the camera calibration technology. Then the epipolar constraint can be calculated which contains the calibrated information. The image matching which uses the epipolar constraint is done to find the matching points. The three dimensional (3D) coordinates of edges points are reconstructed through trigonometry reconstruction. At last the analytic expression of the plane in which the circle lies and the circles radius are calculated in two steps by Levenberg-Marquardt (LM) algorithm. The proposed method does not require the prior knowledge of position between the measuring plane and the calibration plane which monocular measurement needs. Experimental results show that the measurement has high precision.