Some years ago my attention was drawn to those algebraic quantities, which are commonly called impossible roots or imaginary quantities: it appeared extraordinary, that mathematicians should be able by means of these quantities to pursue their investigations, both in pure and mixed mathematics, and to arrive at results which agree with the results obtained by other independent processes; and yet that the real nature of these quantities should be entirely unknown, and even their real existence denied. One thing was evident respecting them; that they were quantities capable of undergoing algebraic operations analogous to the operations performed on what are called possible quantities, and of producing correct results: thus it was manifest, that the operations of algebra were more comprehensive than the definitions and fundamental principles; that is, that they extended to a class of quantities, viz. those commonly called impossible roots, to which the definitions and fundamental principles were inapplicable. It seemed probable, therefore, that there was a deficiency in the definitions and fundamental principles of algebra ; and that other definitions and fundamental principles might be discovered of a more comprehensive nature, which would extend to every class of quantities to which the operations of algebra were applicable; that is, both to possible and impossible quantities, as they are called. I was induced therefore to examine into the nature of algebraic operations, with a view, if possible, of arriving at these general definitions and fundamental principles: and I found, that, by considering algebra merely as applied to geometry, such principles and definitions might be obtained. The fundamental principles and definitions which I arrived at were these: that all straight lines drawn in a given plane from a given point, in any direction whatever, are capable of being algebraically represented, both in length and direction; that the addition of such lines (when estimated both in length and direction) must be performed in the same manner as composition of motion in dynamics; and that four such lines are proportionals, -both in length and direction, when they are proportionals in length, and the fourth is inclined to the third at the same angle that the second is to the first. From these principles I deduced, that, if a line drawn in any given direction be assumed as a positive quantity, and consequently its opposite, a negative quantity, a line drawn at right angles to the positive or negative direction will be the square root of a negative quantity, and a line drawn in an oblique direction will be the sum of two quantities, the one either positive or negative, and the other, the square root of a negative quantity.