We consider a stochastic Cahn-Hilliard partial differential equation driven by a space-time white noise. In this paper, weprove a Central Limit Theorem (CLT) and a Moderate Deviation Principle (MDP) for a perturbed stochastic Cahn-Hilliard equation inHolder norm. The techniques are based on Freidlin-Wentzell’s Large Deviations Principle. The exponential estimates in the space of ̈Holder continuous functions and the Garsia-Rodemich-Rumsey’s lemma plays an important role, an another approach than the Li.R. ̈and Wang.X. Finally, we establish the CLT and MDP for stochastic Cahn-Hilliard equation with uniformly Lipschitzian coefficients. MSC: 60H15, 60F05, 35B40, 35Q62 REFERENCES[1] Ben Arous, G., & Ledoux, M. (1994). Grandes deviations de Freidlin-Wentzell en norme h ́ olderienne. ̈ S ́eminaire de probabilit ́esde Strasbourg, 28, 293-299.[2] Boulanba, L., & Mellouk, M. (2020). Large deviations for a stochastic Cahn–Hilliard equation in Holder norm. ̈ InfiniteDimensional Analysis, Quantum Probability and Related Topics, 23(02), 2050010.[3] Cahn, J. W., & Hilliard, J. E. (1971). Spinodal decomposition: A reprise. Acta Metallurgica, 19(2), 151-161.[4] Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemicalphysics, 28(2), 258-267.[5] Cardon-Weber, C. (2001). Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli, 777-816.[6] Chenal, F., & Millet, A. (1997). Uniform large deviations for parabolic SPDEs and applications. Stochastic Processes and theirApplications, 72(2), 161-186.[7] Freidlin, M. I. (1970). On small random perturbations of dynamical systems. Russian Mathematical Surveys, 25(1), 1-55.[8] Li, R., & Wang, X. (2018). Central limit theorem and moderate deviations for a stochastic Cahn-Hilliard equation. arXivpreprint arXiv:1810.05326.[9] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. Lecture notes in mathematics, 265-439.[10] Wang, R., & Zhang, T. (2015). Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise.Potential Analysis, 42, 99-113.
Read full abstract