Previous article Next article Optimal Controls for Systems with Time LagA. HalanayA. Halanayhttps://doi.org/10.1137/0306016PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] G. L. Kharatishvili, The maximum principle in the theory of optimal processes with time lag, Dokl. Akad. Nauk SSSR, 136 (1961), 39–42 Google Scholar[1A] L. S. Pontryagin, , V. G. Boltyanskii, , R. V. Gamkrelidze and , E. F. Mishchenko, The mathematical theory of optimal processes, Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt, Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962viii+360 MR0166037 0102.32001 Google Scholar[2] Avner Friedman, Optimal control for hereditary processes, Arch. Rational Mech. Anal., 15 (1964), 396–416 10.1007/BF00256929 MR0170744 0122.10801 CrossrefISIGoogle Scholar[3] I. A. Oziganova, On the theory of optimal control of systems with time lag, Seminar on Differential Equations with Deviating Arguments, Vol. II, University of the Friendship of Peoples, Moscow, 1963, 136–145, See also: On the theory of optimal control for problems with time lag, thesis, University of the Friendship of Peoples, Moscow, 1966. Google Scholar[4] Magnus R. Hestenes, On variational theory and optimal control theory, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 23–48 MR0184763 0151.12803 LinkGoogle Scholar[5] Rodney D. Driver, Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal., 10 (1962), 401–426 10.1007/BF00281203 MR0141863 0105.30401 CrossrefISIGoogle Scholar[6] M. Namı k Oğuztöreli, Time-lag control systems, Mathematics in Science and Engineering, Vol. 24, Academic Press, New York, 1966xii+323 MR0217394 0143.12101 Google Scholar[7] G. L. Kharatishvili, A. V. Balakrishnan and , L. W. Neustadt, A maximum principle in extremal problems with delaysMathematical Theory of Control (Proc. Conf., Los Angeles, Calif., 1967), Academic Press, New York, 1967, 26–34 MR0256240 0216.17701 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Continuity of Pontryagin Extremals with Respect to Delays in Nonlinear Optimal ControlRiccardo Bonalli, Bruno Hérissé, and Emmanuel Trélat18 April 2019 | SIAM Journal on Control and Optimization, Vol. 57, No. 2AbstractPDF (576 KB)Optimal Control Problems with Time Delays: Constancy of the HamiltonianRichard B. Vinter25 July 2019 | SIAM Journal on Control and Optimization, Vol. 57, No. 4AbstractPDF (525 KB)The Maximum Principle for Optimal Control Problems with Time DelaysA. Boccia and R. B. Vinter19 September 2017 | SIAM Journal on Control and Optimization, Vol. 55, No. 5AbstractPDF (407 KB)The Construction of the Solution of an Optimal Control Problem Described by a Volterra Integral Equation17 February 2012 | SIAM Journal on Control and Optimization, Vol. 21, No. 4AbstractPDF (1468 KB)Optimal Controls with Pseudodelays18 July 2006 | SIAM Journal on Control, Vol. 12, No. 2AbstractPDF (1227 KB)Optimal Control Problems with a System of Integral Equations and Restricted Phase Coordinates18 July 2006 | SIAM Journal on Control, Vol. 10, No. 1AbstractPDF (1661 KB)The Optimization of Trajectories of Linear Functional Differential Equations18 July 2006 | SIAM Journal on Control, Vol. 8, No. 4AbstractPDF (2777 KB) Volume 6, Issue 2| 1968SIAM Journal on Control History Submitted:06 July 1967Published online:18 July 2006 InformationCopyright © 1968 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0306016Article page range:pp. 215-234ISSN (print):0036-1402Publisher:Society for Industrial and Applied Mathematics