The paper reviews chemical processes that occurred in the cooler outer regions of the primitive solar nebula (PSN) at the time of intimate chemical contact between the preplanetary condensate and the nebular gas. The elemental composition of the PSN is discussed, the 15 most abundant elements in it are listed, and numerical models of it are examined. Various condensation models are described and tested against observed properties of the planets, their satellites, and the asteroids. The chemistry of abundant volatile elements in the PSN is investigated along with stability limits of graphite in a solar-composition gas, regions of dominance of the most abundant carbon-containing gas species in the same gas, and implications of the moon's composition for its origin. Some theories that have been proposed as alternatives to the condensation models are noted.
Read full abstract