In triatomines, vectors of Chagas disease, active dispersal takes place by walking and flying. Flight has received more attention than walking although the last is the dispersal modality used by nymphs due to their lack of wings and also used by adults, which would facilitate the colonization and reinfestation of houses after vector control actions. The present work studied the morphometrical variation of Triatoma infestans legs, the main vector of Chagas disease the Southern Cone of South America. We described morphometric traits and the natural variation of each leg segment. Different linear, size and shape variables of each component of the three right legs of fifth instar nymphs of T. infestans were analyzed using morphometric tools. We analyzed differentiation, variation and correlation for each segment across the fore-, mid and hind legs using different statistical approaches such as general linear model, canonical variates analysis, test of equality of coefficient of variation and partial least square analysis. We also analyzed variation and correlation between segments within each leg with partial least square and morphometric disparity analyses. Our results showed that the segments differed between legs, as general trends, the dimensions (length, width and/or size) were greater in the hind legs, smaller in the forelegs and intermediate in the mid ones. The femur and tibia (length and/or width) showed differences in morphometric variation between legs and the femur and tibia showed the highest levels of correlation between legs. On the other hand, in the fore- and mid legs, the femur (length or width) showed similar variation with tibia and tarsus lengths, but in the hind legs, the femur showed similar variation with all segments and not with the tibia length, and there were strong correlations between linear measurement within each leg. Our results suggest that the femur and tibia could play a determining role in the coordination between the legs that determines the walking pattern. Considering that these segments would also be linked to the specific function that each leg has, this study suggests a preponderant role of the femur and tibia in the walking locomotion of T. infestans.
Read full abstract