The security of RSA relies on the computationally challenging factorization of RSA modulus N=p1 p2 with N being a large semi-prime consisting of two primes p1and p2, for the generation of RSA keys in commonly adopted cryptosystems. The property of p1 and p2, both congruent to 1 mod 4, is used in Euler’s factorization method to theoretically factorize them. While this caters to only a quarter of the possible combinations of primes, the rest of the combinations congruent to 3 mod 4 can be found by extending the method using Gaussian primes. However, based on Pythagorean primes that are applied in RSA, the semi-prime has only two sums of two squares in the range of possible squares N−1, N/2 . As N becomes large, the probability of finding the two sums of two squares becomes computationally intractable in the practical world. In this paper, we apply Pythagorean primes to explore how the number of sums of two squares in the search field can be increased thereby increasing the likelihood that a sum of two squares can be found. Once two such sums of squares are found, even though many may exist, we show that it is sufficient to only find two solutions to factorize the original semi-prime. We present the algorithm showing the simplicity of steps that use rudimentary arithmetic operations requiring minimal memory, with search cycle time being a factor for very large semi-primes, which can be contained. We demonstrate the correctness of our approach with practical illustrations for breaking RSA keys. Our enhanced factorization method is an improvement on our previous work with results compared to other factorization algorithms and continues to be an ongoing area of our research.
Read full abstract