Let A={a_0,ldots ,a_{n-1}} be a finite set of nge 4 non-negative relatively prime integers, such that 0=a_0<a_1<cdots <a_{n-1}=d. The s-fold sumset of A is the set sA of integers that contains all the sums of s elements in A. On the other hand, given an infinite field k, one can associate with A the projective monomial curve mathcal {C}_A parametrized by A, CA={(vd:ua1vd-a1:⋯:uan-2vd-an-2:ud)∣(u:v)∈Pk1}⊂Pkn-1.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\quad \\mathcal {C}_A=\\{(v^d:u^{a_1}v^{d-a_1}:\\cdots :u^{a_{n-2}}v^{d-a_{n-2}}:u^d) \\mid (u:v)\\in \\mathbb {P}^{1}_k\\}\\subset \\mathbb {P}^{n-1}_k. \\end{aligned}$$\\end{document}The exponents in the previous parametrization of mathcal {C}_A define a homogeneous semigroup mathcal {S}subset mathbb {N}^2. We provide several results relating the Castelnuovo–Mumford regularity of mathcal {C}_A to the behavior of the sumsets of A and to the combinatorics of the semigroup mathcal {S} that reveal a new interplay between commutative algebra and additive number theory.