N-glycosylation is one of the most important forms of protein modification, serving key biological functions in multicellular organisms. N-glycans at the cell surface mediate the interaction between cells and the surrounding matrix and may act as pathogen receptors, making the genes responsible for their synthesis good candidates to show signatures of adaptation to different pathogen environments. Here, we study the forces that shaped the evolution of the genes involved in the synthesis of the N-glycans during the divergence of primates within the framework of their functional network. We have found that, despite their function of producing glycan repertoires capable of evading rapidly evolving pathogens, genes involved in the synthesis of the glycans are highly conserved, and no signals of positive selection have been detected within the time of divergence of primates. This suggests strong functional constraints as the main force driving their evolution. We studied the strength of the purifying selection acting on the genes in relation to the network structure considering the position of each gene along the pathway, its connectivity, and the rates of evolution in neighboring genes. We found a strong and highly significant negative correlation between the strength of purifying selection and the connectivity of each gene, indicating that genes encoding for highly connected enzymes evolve slower and thus are subject to stronger selective constraints. This result confirms that network topology does shape the evolution of the genes and that the connectivity within metabolic pathways and networks plays a major role in constraining evolutionary rates.
Read full abstract