Primary stability of dental implants is the initial mechanical engagement of the implant with its adjacent bone. Implantation and the subsequent loading may cause mechanical damage in the peripheral bone, which ultimately reduces the stability of the implant. This study aimed at evaluating primary stability of dental implants through applying stepwise compressive displacement-controlled, loading-unloading cycles to obtain overall stiffness and dissipated energy of the bone-implant structure; and quantifying induced plastic strains in surrounding bone using digital volume correlation (DVC) method, through comparing μCT images in different loading steps. To this end, dental implants were inserted into the cylindrical trabecular bones, then the bone-implant structure was undergone step-wise loading-unloading cycles, and μCT images were taken in some particular steps, then comparison was made between undeformed and deformed configurations using DVC to quantify plastic strain within the trabecular bone. Comparing stiffness reduction and dissipated energy values in different loading steps, obtained from the force-displacement curve in each loading step, revealed that the maximum displacement of 0.16 mm can be deemed as a safe threshold above which damages in peri-implant bone started to increase considerably (p < 0.05). In addition, it was found here that peri-implant bone strain linearly increased with decreasing bone-implant stiffness (p < 0.05). Moreover, strain concentration in peri-implant bone region showed that the plastic strain in trabecular bone spread up to a distance of about 2.5 mm away from the implant surface. Research of this kind can be used to optimize the design of dental implants, with the ultimate goal of improving their stability, also to validate in-silico models, e.g., micro-finite element models, which can help gain a deeper understanding of bone-implant construct behavior.
Read full abstract