Abstract

Primary stability of a dental implant is defined as its ability to resist the applied load without showing excessive damage in peri-implant bone, which is a prerequisite for secondary stability, and consequently for implantation success. The main goal of this study was to develop a validated micro-finite element (μFE) approach to assess the primary stability of dental implants in terms of stiffness, stiffness reduction, and irreversible displacement of the bone-implant system, subjected to an increasing step-wise quasi-static compressive loading-unloading test. The μFE models were generated based on the μCT images of bone, taken from extracted bovine tibia trabecular bone samples after drilling and implantation. A tissue constitutive model was considered for trabecular bone by describing elasto-plasticity with a modified von Mises yield criterion and element deletion technique to account for trabecular bone damage behavior. Then, the obtained force-displacement curves from the simulation were compared with the in-vitro mechanical test curves to evaluate the validity of the model. The results showed that the proposed μFE model could be properly predict the bone-implant system mechanical response in terms of irreversible displacement (R2 = 0.99), stiffness (R2 = 0.77), and stiffness reduction (R2 = 0.72) of the bone-implant construct for all the applied displacements without a significant difference from the unit slope and zero intercept of the QQ-plot (p-value<0.05). Moreover, a qualitative agreement was seen between the peri-implant bone damage predicted by the μFE model and the observed from μCT images. The adopted methodology used in this study can predict the mechanical failure response of the bone-implant system, which can be employed as a representative tool to study the effects of various dental implant design parameters on the primary stability with the ultimate goal of optimizing dental implants design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call