During the COVID-19 lockdown in early 2020, observations in Beijing indicate that secondary organic aerosol (SOA) concentrations increased despite substantial emission reduction, but the reasons are not fully explained. Here, we integrate the two-dimensional volatility basis set into a state-of-the-art chemical transport model, which unprecedentedly reproduces organic aerosol (OA) components resolved by the positive matrix factorization based on aerosol mass spectrometer observations. The model shows that, for Beijing, the emission reduction during the lockdown lowered primary organic aerosol (POA)/SOA concentrations by 50%/18%, while deteriorated meteorological conditions increased them by 30%/119%, resulting in a net decrease in the POA concentration and a net increase in the SOA concentration. Emission reduction and meteorological changes both led to an increased OH concentration, which accounts for their distinct effects on POA and SOA. SOA from anthropogenic volatile organic compounds and organics with lower volatility contributed 28 and 62%, respectively, to the net SOA increase. Different from Beijing, the SOA concentration decreased in southern Hebei during the lockdown because of more favorable meteorology. Our findings confirm the effectiveness of organic emission reductions and meanwhile reveal the challenge in controlling SOA pollution that calls for large organic precursor emission reductions to rival the adverse impact of OH increase.