Abstract: Isoxazoline insecticides constitute a class of compounds featuring the isoxazoline structure, which primarily exert their effects by inhibiting the γ-aminobutyric acid (GABA)- gated chloride channel in insects. GABA serves as the primary inhibitory neurotransmitter in invertebrates, with its receptor composed of subunits encoded by the Rdl gene. By selectively inhibiting the GABA-Cl receptor subunit in invertebrates, isoxazolines block inhibitory neurotransmission, ultimately resulting in insect mortality. This unique mechanism of action endows isoxazolines with a high degree of selective toxicity toward insects while maintaining relative safety for mammals. Recently, isoxazoline insecticides have garnered considerable attention due to their broad-spectrum efficacy, high potency, and environmentally friendly profile. These compounds have emerged as promising solutions in crop protection and animal health management, offering innovative means to combat insect pests and parasites. Their development represents a significant advancement in pesticides, offering farmers and veterinarians effective and sustainable options for managing agricultural and animal health challenges. This review mainly introduces the current commercialized and under-development isoxazoline insecticides, the research progress on the mechanism of action of isoxazoline insecticides, the study of synthetic methods, as well as the research progress in structural derivation and structure-activity relationship.
Read full abstract