The deposition of Yellow River sediment in the middle and lower reaches is a significant factor in the siltation of reservoirs and the occurrence of serious flooding along the river. The efficient and valuable utilization of Yellow River sediment has already become a key research topic in this field. In this study, we have employed Yellow River sediment as the primary material, in conjunction with commercially available slag, fly ash, and quicklime as the binder, to develop a novel type of artificial flood-prevention stone. Following a 28-day standard curing procedure, the highest compressive strength of the prepared artificial stone was recorded at 4.29 MPa, with a value exceeding 0.7 MPa under wet conditions. The results demonstrated that the prepared artificial stone met the specifications for artificial flood-prevention stones. The curing mechanism, as evidenced by analyses from SEM and XRD testing, indicated that the alkali excitation process in the binder, which produced C-A-S-H gel, was the key factor in enhancing the compressive strength of the specimens. Notably, an evaluation of the amount of CO2 emissions and the cost of the artificial stone concluded that the preparation process was both environmentally friendly and cost-effective.