Hypermethylation of cytosine in expanded (CCG)n•(CGG)n trinucleotide repeats results in Fragile X syndrome, the most common cause of inherited mental retardation. The (CCG)n•(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of protonated base pairs of cytosine. Here we investigate the effects of 5-methylation and the sugar moiety on the base-pairing energies (BPEs) of protonated cytosine base pairs by examining protonated nucleoside base pairs of 2'-deoxycytidine (dCyd) and 5-methyl-2'-deoxycytidine (m(5)dCyd) using threshold collision-induced dissociation techniques. 5-Methylation of a single or both cytosine residues leads to very small change in the BPE. However, the accumulated effect may be dramatic in diseased state trinucleotide repeats where many methylated base pairs may be present. The BPEs of the protonated nucleoside base pairs examined here significantly exceed those of Watson-Crick dGuo•dCyd and neutral dCyd•dCyd base pairs, such that these base-pairing interactions provide the major forces responsible for stabilization of DNA i-motif conformations. Compared with isolated protonated nucleobase pairs of cytosine and 1-methylcytosine, the 2'-deoxyribose sugar produces an effect similar to the 1-methyl substituent, and leads to a slight decrease in the BPE. These results suggest that the base-pairing interactions may be slightly weaker in nucleic acids, but that the extended backbone is likely to exert a relatively small effect on the total BPE. The proton affinity (PA) of m(5)dCyd is also determined by competitive analysis of the primary dissociation pathways that occur in parallel for the protonated (m(5)dCyd)H(+)(dCyd) nucleoside base pair and the absolute PA of dCyd previously reported.