Most ensiferan insects possess sets of highly specialized chordotonal organs in the proximal tibiae to detect conspecific auditory/vibratory signals or approach of predators. To date, most auditory/vibratory afferents have been classified according to their physiological properties and axonal projection morphology, but not to somatotopic origins. Hence, the functional specialization of identified receptor cells in the tibial organs remains uncertain. To address this question from an anatomical aspect, we investigated the structure of the weta, Hemideina femorata, tibial organs (the most elaborated tibial chordotonal organs among ensiferans) and their central projections by staining small numbers of receptor afferents from identified tibial organs. These organs comprise the "complex tibial organ," including the subgenual organ (primary vibration detector) and its posterior complement, the accessory organ, and the crista acustica (primary auditory organ) and its proximal complement, the intermediate organ. Unlike reports of a membranous organ structure for homologs in other ensiferans, weta tibial organs contain receptor cells embedded in thick solid masses. Primary afferents project ipsilaterally to the medial ventral association center of thoracic ganglia, where axon terminals are arrayed topographically in different areas specific to each organ, except for almost complete overlap of afferents originating from the distal part of the crista acustica and from the intermediate organ. In contrast to somatotopic reflection of sensilla position on limbs, as known for mechanoreceptor hairs, the somatotopic projection map of the insect ear reveals topographic association with acoustic tracheae or tibial cuticular attachment sites, which in turn must reflect determinants of response sensitivity (e.g., frequency or threshold).
Read full abstract