A study has been conducted to investigate the formation of intermediate phases during the crystallization of SAPO-11 molecular sieves from reaction mixtures with a varying template (di-n-propylamine) DPA/Al2O3 ratio. It was found that changing the DPA/Al2O3 ratio from 1.0 to 1.8 in the initial reaction gels leads to the formation of different intermediate phases during crystallization into a SAPO-11 molecular sieve. It is shown that at the ratio template/Al2O3 = 1.0, an intermediate amorphous silicoaluminophosphate is formed; at 1.4, a mixture consisting of amorphous and layered phases forms; and at 1.8, a layered phase is present. A simple and innovative approach for controlling the morphology, size, and characteristics of primary crystals and the secondary porous structure in hierarchical SAPO-11 is proposed. The method is based on regulating the DPA/Al2O3 ratio in the reaction gel. The synthesized SAPO-11 molecular sieves with a hierarchical porous structure exhibited high selectivity in the hydroisomerization of n-hexadecane.
Read full abstract