Abstract
AbstractAchieving high stability and excellent optical performance in complex environments is crucial for practical applications of magnetically responsive photonic crystals (MRPCs). It, however, remains a great challenge. This study demonstrates a polyphenol‐mediated strategy for synthesizing size‐controllable superparamagnetic magnetite (Fe3O4) colloid nanocrystal clusters (CNCs) that can be stably dispersed in various polar solvents to form MRPCs with brilliant structural colors for a long term. As tannic acid (TA) functions as a linker to robustly bind polyvinylpyrrolidone (PVP) chains to Fe3O4 surfaces, the MRPCs can maintain nearly constant diffraction wavelength and high reflectance for up to 4 years. The strong coordination between TA and Fe3+ inhibits crystal growth, ensuring the small primary crystal size and superparamagnetism of Fe3O4@TA‐PVP CNCs. Partial oxidation of TA accelerates the crystal nucleation and growth, reducing the overall CNC particle size, which can be utilized for controlling the particle size. Additionally, enhancing the dissolution of PVP before the solvothermal reaction improves the size monodispersity of the products, making the as‐constructed MRPCs ideal for practical applications in color display, sensors, anti‐counterfeiting, and camouflage. The Fe3O4@TA‐PVP CNCs with high stability and versatility for surface‐functionalization are also promising for magnetic resonance imaging, targeting drug delivery, recyclable catalysis, and magnetic nanomotors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.