In absolute ethanol and in the presence of triethylorthoformate, reactions of metal(II) nitrates with linear tridentate amines afforded metal complexes of the formula M(NNN)(NO3)2, where M = Ni2+, Cu2+ and Zn2+, and NNN = dien and Medpt. The compounds fall into three categories in accordance with their stereochemistry and mode of binding of the nitrato ligands. Compounds I, [Ni(dien)(O2NO)(ONO2)] and III, [Zn(dien)(O2NO)(ONO2)] are isomorphous and isostructural. They crystallize in the monoclinic space group P21/n with nearly identical cell constants. The stereochemistry of these two compounds is such that the terdentate dien ligand forms a fac MN3 moiety with the two oxygens of the bidentate nitrato ligand trans to the terminal NH2. These ligands form the base of the octahedral arrangement in which the sixth position, trans to the secondary nitrogen of the dien, is an oxygen of the monodentate nitrato ligand. Compound IV, [Ni(Medpt)(O2NO)(ONO2)] falls into the same category as I and III despite the fact that the two rings in the Ni-Medpt moiety are six-membered rings, unlike those in compounds I and III which are five-membered rings. Nevertheless, the nickel-amine arrangement is fac. The bidentate nitrato-oxygens are trans to the terminal NH2 of the amine ligand, and the oxygen of the monodentate nitrato ligand is trans to the tertiary amine-nitrogen. Such stereochemistry is prevalent for nickel and zinc compounds. Interestingly, compound IV crystallizes as a conglomerate (space group P212121). Compound II, {[Cu(dien)(μ-ONO2)]NO3}∞ belongs to the second category and has a polymeric structure. The repeating fragment in the polymeric chain is a Cu(dien)-O fragment with the monodentate nitrato ligand occupying an equatorial position of the base. A second oxygen of the equatorial nitrate becomes an axial ligand for an adjacent Cu-N3O fragment. In this way the substance propagates into an infinite chain. The repeating unit has an effective square pyramidal, five-coordinate, configuration. Finally, the compound crystallizes as a racemate. The second nitrate necessary for charge compensation of this copper(II) compound is ionic and its function is to hold the infinite chains of the lattice. The third category represented by compound V, [Cu(Medpt)(ONO2)2] contains two molecules in the asymmetric unit of the racemic lattice (monoclinic, space group P21/a). The structure of Cu-Medpt is unlike that of IV in that both species present in the asymmetric unit have the amine ligand in a mer configuration which together with a monodentate oxygen of a nitrato ligand form a base plane of a square pyramid. The fifth ligand of both Cu2+ ions is a second monodentate nitrato ligand. The stereochemical differences between the two Cu2+ ions are insignificant for the Cu-Medpt fragment, which share the same conformation and configuration. The major difference between the two species is the torsional angles defined by the Cu-O-N-O angles. The difference arises from variation in the hydrogens of the primary amine moieties selected by nitrato-oxygens to form intramolecular hydrogen bonds. Finally, there is a little variation in the equatorial Cu-ONO2 stereochemistry because of steric hindrance, imposed by the Medpt, preventing large torsional angles by these nitrato ligands. This is evident by comparing the two copper species shown in Finally, nitrate-to-Br ligand exchange was found to take place when KBr pellets are prepared for IR spectral measurements.