Purpose The successful treatment of painful neuromas remains a difficult goal to attain. In this report we explore the feasibility of neuroma prevention by insertion of the proximal end of a nerve through an end-to-side neurorraphy into an adjacent mixed nerve to provide a pathway and target for axons deprived of their end organ. Methods Experiments were performed on a total of twenty 250-g Sprague-Dawley rats. Two groups of 10 animals were prepared. Group A served as an anatomic control. In group B the right saphenous nerve was transected and implanted end-to-side through an epineurial window into the tibial nerve distal to the trifurcation of the sciatic nerve. After 12 weeks the corresponding sensory neurons were identified by retrograde labeling techniques and histomorphometric analysis of the proximal and distal tibial nerve segments, and regular histology of the end-to-side site were performed. Results The results of the retrograde labeling of the corresponding sensory neuron pool of the saphenus nerve showed extensive labelling of the L1 to L3 spinal ganglions after intracutaneuous tracer application of the planta pedis. The morphology of the end-to-side coaptation site and histomorphologic analysis prove that sensory neurons penetrate the perineurial sheath and axons regenerate along the tibial Schwann cell tubes toward their targets. Conclusions Axons of a severed peripheral nerve that are provided with a pathway and target through an end-to-side coaptation will either be pruned or establish some type of end-organ contact so that a neuroma can be prevented. Whether these axons will lead to disturbing sensations such as paresthesia or dysesthesia in the newly found environment or remain silent codwellers, this experiment cannot answer. Long-term results of future clinical work will have to decide whether the prevention of the neuroma through end-to-side coaptation will be an appropriate therapy for this difficult problem.
Read full abstract